Package: GreedyEPL 1.2

GreedyEPL: Greedy Expected Posterior Loss

Summarises a collection of partitions into a single optimal partition. The objective function is the expected posterior loss, and the minimisation is performed through a greedy algorithm described in Rastelli, R. and Friel, N. (2017) "Optimal Bayesian estimators for latent variable cluster models" <doi:10.1007/s11222-017-9786-y>.

Authors:Riccardo Rastelli [aut, cre]

GreedyEPL_1.2.tar.gz
GreedyEPL_1.2.zip(r-4.5)GreedyEPL_1.2.zip(r-4.4)GreedyEPL_1.2.zip(r-4.3)
GreedyEPL_1.2.tgz(r-4.4-x86_64)GreedyEPL_1.2.tgz(r-4.4-arm64)GreedyEPL_1.2.tgz(r-4.3-x86_64)GreedyEPL_1.2.tgz(r-4.3-arm64)
GreedyEPL_1.2.tar.gz(r-4.5-noble)GreedyEPL_1.2.tar.gz(r-4.4-noble)
GreedyEPL_1.2.tgz(r-4.4-emscripten)GreedyEPL_1.2.tgz(r-4.3-emscripten)
GreedyEPL.pdf |GreedyEPL.html
GreedyEPL/json (API)

# Install 'GreedyEPL' in R:
install.packages('GreedyEPL', repos = c('https://riccardorastelli.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.08 score 12 scripts 152 downloads 1 mentions 2 exports 2 dependencies

Last updated 3 years agofrom:5a72356b5e. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64NOTENov 07 2024
R-4.5-linux-x86_64NOTENov 07 2024
R-4.4-win-x86_64NOTENov 07 2024
R-4.4-mac-x86_64NOTENov 07 2024
R-4.4-mac-aarch64NOTENov 07 2024
R-4.3-win-x86_64OKNov 07 2024
R-4.3-mac-x86_64OKNov 07 2024
R-4.3-mac-aarch64OKNov 07 2024

Exports:CollapseLabelsMinimiseEPL

Dependencies:RcppRcppArmadillo

Readme and manuals

Help Manual

Help pageTopics
Greedy Expected Posterior LossGreedyEPL-package GreedyEPL
CollapseLabelsCollapseLabels
MinimiseEPLMinimiseEPL